
Distributional Regression
ACTL3143 & ACTL5111 Deep Learning for Actuaries

Patrick Laub

1 / 81

Lecture Outline

Introduction

Traditional Regression

Stochastic Forecasts

GLMs and Neural Networks

Combined Actuarial Neural Network

Mixture Density Network

Metrics for Distributional Regression

Aleatoric and Epistemic Uncertainty

Avoiding Over�tting

Dropout

Ensembles

1 / 81

Neural networks and con�dence

Say we have a neural network that classi�es ducks from rabbits.

A duck in the training set A rabbit in this training set

2 / 81

New data can be di�erent

Source: Olga Telnova, , Posterlounge, accessed on July 16 2024.Cute Duck with Bunny Ears

3 / 81

https://www.posterlounge.co.uk/p/755230.html

New data can be challenging

Source: Wikimedia Commons

4 / 81

https://commons.wikimedia.org/wiki/Category:Rabbit%E2%80%93duck_illusion#/media/File:Canard-lapin_retouch%C3%A9.jpg

Classi�ers give us a probability
This is already a big step up compared to regression models.

However, neural networks’ “probabilities” can be overcon�dent.

We a case of this.

See Guo et al. (2017), .

already saw

On Calibration of Modern Neural Networks

5 / 81

https://pat-laub.github.io/DeepLearningForActuaries/Computer-Vision/computer-vision.html#confidence-of-predictions
https://arxiv.org/pdf/1706.04599

Key idea

Earlier machine learning models

focused on point estimates.

However, in many applications,

we need to understand the

distribution of the response

variable.

Each prediction becomes a

distribution over the possible

outcomes

An example of distributional forecasting over

the All Ordinaries Index

Source: Tomasz Woźniak (2024), , accessed on July 15 2024.LinkedIn Post

6 / 81

https://www.linkedin.com/posts/tomaszwwozniak_rstats-densityforecasting-activity-7171005952463134721-ZsHl?utm_source=share&utm_medium=member_desktop

Lecture Outline

Traditional Regression

Introduction

Stochastic Forecasts

GLMs and Neural Networks

Combined Actuarial Neural Network

Mixture Density Network

Metrics for Distributional Regression

Aleatoric and Epistemic Uncertainty

Avoiding Over�tting

Dropout

Ensembles

6 / 81

Notation

scalars are denoted by lowercase letters, e.g., ,

vectors are denoted by bold lowercase letters, e.g.,

random variables are denoted by capital letters, e.g.,

random vectors are denoted by bold capital letters, e.g.,

matrices are denoted by bold uppercase non-italics letters, e.g.,

y

y = (y , … , y),1 n

Y

X = (X , … ,X),1 p

X = .
⎝

⎛x 11

⋮
x n1

⋯

⋱
⋯

x 1p

⋮
x np

⎠

⎞

7 / 81

Regression notation

 is the number of observations, is the number of features,

the true coe�cients are ,

 is the intercept, are the coe�cients,

 is the estimated coe�cient vector,

 is the feature vector for the th observation,

 is the response variable for the th observation,

 is the predicted value for the th observation,

probability density functions (p.d.f.), probability mass functions

(p.m.f.), cumulative distribution functions (c.d.f.).

n p

β = (β ,β , … ,β)0 1 p

β 0 β , … ,β 1 p

 β

x =i (1,x ,x , … ,x)i1 i2 ip i

y i i

 ŷi i

8 / 81

Traditional Regression
Multiple linear regression assumes the data-generating process is

where .

We estimate the coe�cients by minimising the sum of

squared residuals or mean squared error

where is the predicted value for the th observation.

Y =i β +0 β x +1 i1 β x +2 i2 … + β x +p ip ε

ε ∼ N (0,σ)2

β ,β , … ,β 0 1 p

RSS := (y −
i=1

∑
n

i) , MSE :=ŷi
2

 (y −
n

1

i=1

∑
n

i) ,ŷi
2

 ŷi i

9 / 81

Visualising the distribution of each Y
10 / 81

The probabilistic view

where , and the is known.

The normal distribution has p.d.f.

The likelihood function is

Y ∼i N (μ ,σ)i
2

μ =i β +0 β x +1 i1 … + β x p ip σ2

N (μ,σ)2

f(y) = exp − .
 2πσ2

1
(

2σ2

(y − μ)2

)

L(β) = exp −

i=1

∏
n

 2πσ2

1
(

2σ2

(y − μ)i i
2

)

⇒ ℓ(β) = − log(2π) −
2
n

 log(σ) −
2
n 2

 (y −
2σ2

1

i=1

∑
n

i μ) .i
2

11 / 81

The predicted distributions
12 / 81

The machine learning view
The negative log-likelihood is to be minimised:

As is �xed, minimising NLL is equivalent to minimising MSE:

NLL(β) := −ℓ(β)

NLL(β) = log(2π) +
2
n

 log(σ) +
2
n 2

 (y −
2σ2

1

i=1

∑
n

i μ) .i
2

σ2

 β = NLL(β)
β

arg min

= log(2π) + log(σ) + (y − μ)
β

arg min
2
n

2
n 2

2σ2

1

i=1

∑
n

i i
2

= (y − (x ;β))
β

arg min
n

1

i=1

∑
n

i ŷi i

2

= MSE(y, (X;β)).
β

arg min ŷ

13 / 81

Generalised Linear Model (GLM)
The GLM is often characterised by the mean prediction:

where is the link function.

Common GLM distributions for the response variable include:

Normal distribution with identity link (just MLR)

Bernoulli distribution with logit link (logistic regression)

Poisson distribution with log link (Poisson regression)

Gamma distribution with log link

μ(x;β) = g β,x−1 (⟨ ⟩)

g

14 / 81

Logistic regression
A Bernoulli distribution with parameter has p.m.f.

Our model is follows a Bernoulli distribution with

parameter

The likelihood function, using , is

p

f(y) = = {
p

1 − p

if y = 1
if y = 0

p (1 −y p) .1−y

Y ∣X = x

μ(x;β) = =
1 + exp − β,x(⟨ ⟩)

1
P(Y = 1∣X = x).

μ :=i μ(x ;β)i

L(β) = =
i=1

∏
n

{
μ i

1 − μ i

if y = 1i

if y = 0i

 μ (1 −
i=1

∏
n

i
y i μ) .i

1−y i

15 / 81

Binary cross-entropy loss

The negative log-likelihood is

The binary cross-entropy loss is basically identical:

L(β) = μ (1 −
i=1

∏
n

i
y i μ) ⇒i

1−y i ℓ(β) = (y log(μ) +
i=1

∑
n

i i (1 − y) log(1 −i μ)).i

NLL(β) = − (y log(μ) +
i=1

∑
n

i i (1 − y) log(1 −i μ)).i

BCE(y,μ) = − (y log(μ) +
n

1

i=1

∑
n

i i (1 − y) log(1 −i μ)).i

16 / 81

Poisson regression
A Poisson distribution with rate has p.m.f.

Our model is is Poisson distributed with parameter

The likelihood function is

λ

f(y) = .
y!

λ exp(−λ)y

Y ∣X = x

μ(x;β) = exp β,x .(⟨ ⟩)

L(β) =

i=1

∏
n

y !i

μ exp(−μ)i
y i

i

⇒ ℓ(β) = (−μ +
i=1

∑
n

i y log(μ) −i i log(y !)).i

17 / 81

Poisson loss

The negative log-likelihood is

The Poisson loss is

NLL(β) = (μ −
i=1

∑
n

i y log(μ) +i i log(y !)).i

Poisson(y,μ) = (μ −
n

1

i=1

∑
n

i y log(μ)).i i

18 / 81

Gamma regression
A gamma distribution with mean and dispersion has p.d.f.

Our model is is gamma distributed with a dispersion of

and a mean of .

The likelihood function is

μ ϕ

f(y;μ,ϕ) = y e
Γ (

ϕ
1)

(μϕ)− ϕ
1

 −1
ϕ
1 −

μϕ
y

Y ∣X = x ϕ

μ(x;β) = exp β,x(⟨ ⟩)

L(β) = y exp −

i=1

∏
n

Γ (
ϕ
1)

(μ ϕ)i
−

ϕ
1

i

 −1
ϕ
1

(
μ ϕi

y i)

⇒ ℓ(β) = − log(μ ϕ) − log Γ + − 1 log(y) − .
i=1

∑
n

[
ϕ

1
i (

ϕ

1
) (

ϕ

1
) i

μ ϕi

y i]

19 / 81

Gamma loss

The negative log-likelihood is

Since is a nuisance parameter

As , we could write an alternative version

NLL(β) = log(μ ϕ) + log Γ − − 1 log(y) + .
i=1

∑
n

[
ϕ

1
i (

ϕ

1
) (

ϕ

1
) i

μ ϕi

y i]

ϕ

NLL(β) = log(μ) + +
i=1

∑
n

[
ϕ

1
i

μ ϕi

y i] const ∝ log(μ) + .
i=1

∑
n

[i
μ i

y i]

Note

log(μ) =i log(y) −i log(y /μ)i i

NLL(β) ∝ log(y) − log() + ∝
i=1

∑
n

[i
μ i

y i

μ i

y i] − log() .
i=1

∑
n

[
μ i

y i

μ i

y i]

20 / 81

Why do actuaries use GLMs?

GLMs are interpretable.

GLMs are �exible (can handle di�erent types of response variables).

We get the full distribution of the response variable, not just the

mean.

This last point is particularly important for analysing worst-case

scenarios.

21 / 81

Lecture Outline

Stochastic Forecasts

Introduction

Traditional Regression

GLMs and Neural Networks

Combined Actuarial Neural Network

Mixture Density Network

Metrics for Distributional Regression

Aleatoric and Epistemic Uncertainty

Avoiding Over�tting

Dropout

Ensembles

21 / 81

Stock price forecasting
22 / 81

Noisy auto-regressive forecast
def noisy_autoregressive_forecast(model, X_val, sigma, suppress=False)�1

"""2
 Generate a multi�step forecast using the given model.3
 """4
 multi_step = pd.Series(index=X_val.index, name="Multi Step")5

6
Initialize the input data for forecasting7

 input_data = X_val.iloc[0].values.reshape(1, -1)8
9

for i in range(len(multi_step))�10
Ensure input_data has the correct feature names11

 input_df = pd.DataFrame(input_data, columns=X_val.columns)12
if suppress:13

 next_value = model.predict(input_df, verbose=0)14
else:15

 next_value = model.predict(input_df)16
17

 next_value += np.random.normal(0, sigma)18
19

 multi_step.iloc[i] = next_value20
21

Append that prediction to the input for the next forecast22
if i + 1 < len(multi_step)�23

 input_data = np.append(input_data[�, 1�], next_value).reshape(1, -1)24
25

return multi_step26

23 / 81

Original forecast
lr_forecast = noisy_autoregressive_forecast(lr, X_val, 0)1

residuals = y_train.loc["2015"�] - lr.predict(X_train.loc["2015"�])1
sigma = np.std(residuals)2

24 / 81

With noise
np.random.seed(1)1
lr_noisy_forecast = noisy_autoregressive_forecast(lr, X_val, sigma)2

25 / 81

With noise
np.random.seed(2)1
lr_noisy_forecast = noisy_autoregressive_forecast(lr, X_val, sigma)2

25 / 81

With noise
np.random.seed(3)1
lr_noisy_forecast = noisy_autoregressive_forecast(lr, X_val, sigma)2

25 / 81

Many noisy forecasts
num_forecasts = 3001
forecasts = []2
for i in range(num_forecasts)�3
 forecasts.append(noisy_autoregressive_forecast(lr, X_val, sigma) * 100)4
noisy_forecasts = pd.concat(forecasts, axis=1)5
noisy_forecasts.index = X_val.index6

25 / 81

95% “prediction intervals”
Calculate quantiles for the forecasts1
lower_quantile = noisy_forecasts.quantile(0.025, axis=1)2
upper_quantile = noisy_forecasts.quantile(0.975, axis=1)3
mean_forecast = noisy_forecasts.mean(axis=1)4

26 / 81

Residuals

y_pred = lr.predict(X_train)1
residuals = y_train - y_pred2
residuals -= np.mean(residuals)3
residuals �� np.std(residuals)4
stats.shapiro(residuals)5

/home/plaub/miniconda3/envs/ai2024/lib/python3
packages/scipy/stats/_morestats.py:1882�
UserWarning: p�value may not be accurate for
N > 5000.

warnings.warn("p�value may not be accurate
for N > 5000.")

ShapiroResult(statistic=0.9038059115409851,
pvalue=0.0)

27 / 81

Q-Q plot and P-P plot
27 / 81

Residuals against time

Heteroskedasticity!

28 / 81

Lecture Outline

GLMs and Neural Networks

Introduction

Traditional Regression

Stochastic Forecasts

Combined Actuarial Neural Network

Mixture Density Network

Metrics for Distributional Regression

Aleatoric and Epistemic Uncertainty

Avoiding Over�tting

Dropout

Ensembles

28 / 81

French motor claim sizes

ClaimAmount Exposure VehPower VehAge DrivAge

0 995.20 0.59 11.0 0.0 39.0

1 1128.12 0.95 4.0 1.0 49.0

...

26637 767.55 0.43 6.0 0.0 67.0

26638 1500.00 0.28 7.0 2.0 36.0

26444 rows × 11 columns

sev = pd.read_csv('freMTPL2sev.csv')1
cov = pd.read_csv('freMTPL2freq.csv').drop(columns=['ClaimNb'])2
sev = pd.merge(sev, cov, on='IDpol', how='left').drop(columns=["IDpol"]).dropna()3
sev4

29 / 81

Preprocessing
X_train, X_test, y_train, y_test = train_test_split(1
 sev.drop("ClaimAmount", axis=1), sev["ClaimAmount"], random_state=2023)2
ct = make_column_transformer((OrdinalEncoder(), ["Area", "VehGas"]),3
 ("drop", ["VehBrand", "Region"]), remainder=StandardScaler())4
X_train = ct.f�t_transform(X_train)5
X_test = ct.transform(X_test)6
plt.hist(y_train[y_train < 5000], bins=30);7

30 / 81

Doesn’t prove that is multimodalY ∣X = x
31 / 81

Gamma GLM

Suppose a �tted gamma GLM model has

a log link function and

regression coe�cients .

Then, it estimates the conditional mean of given a new instance

 as follows:

A GLM can model any other exponential family distribution using an

appropriate link function .

g(x) = log(x)

β = (β ,β ,β ,β)0 1 2 3

Y

x = (1,x ,x ,x)1 2 3

E[Y ∣X = x] = g (⟨β,x⟩) =−1 exp (β +0 β x +1 1 beta x +2 2 β x).3 3

g

32 / 81

Gamma GLM loss

If is a gamma r.v. with mean and dispersion

parameter , we can minimise the negative log-likelihood (NLL)

i.e., we ignore the dispersion parameter while estimating the

regression coe�cients.

Y ∣X = x μ(x;β)
ϕ

NLL ∝ log μ(x ;β) +
i=1

∑
n

i +
μ(x ;β)i

y i const,

ϕ

33 / 81

Fitting Steps
Step 1. Use the advanced second derivative iterative method to �nd

the regression coe�cients:

Step 2. Estimate the dispersion parameter:

(Here, is the number of coe�cients in the model. If this doesn’t

include the intercept, then should be use .)

 =β log μ(x ;β) +
β

arg min
i=1

∑
n

i

μ(x ;β)i

y i

ϕ =

n − p

1

i=1

∑
n

μ(x ;β)i
2

(y − μ(x ;β))i i
2

p p

p

n−(p+1)
1

34 / 81

Code: Gamma GLM

In Python, we can �t a gamma GLM as follows:

import statsmodels.api as sm1
2

Add a column of ones to include an intercept in the model3
X_train_design = sm.add_constant(X_train)4

5
Create a Gamma GLM with a log link function6
gamma_glm = sm.GLM(y_train, X_train_design, 7
 family=sm.families.Gamma(sm.families.links.Log()))8

9
Fit the model10
gamma_glm = gamma_glm.f�t()11

gamma_glm.params1

const 7.786576
ordinalencoder��Area -0.073226

���
remainder��BonusMalus 0.157204
remainder��Density 0.010539
Length: 9, dtype: float64

Dispersion Parameter1
mus = gamma_glm.predict(X_train_design)2
residuals = y_train - mus3
dof = (len(y_train)-X_train_design.shape4
phi_glm = np.sum(residuals��2/mus��2)/do5
print(phi_glm)6

59.63363123735805

35 / 81

ANN can feed into a GLM

Combining GLM & ANN.

Source: Ronald Richman (2022), Mind the Gap - Safely Incorporating Deep Learning Models into the Actuarial Toolkit, IFoA seminar, Slide 14.

36 / 81

Lecture Outline

Combined Actuarial Neural Network

Introduction

Traditional Regression

Stochastic Forecasts

GLMs and Neural Networks

Mixture Density Network

Metrics for Distributional Regression

Aleatoric and Epistemic Uncertainty

Avoiding Over�tting

Dropout

Ensembles

36 / 81

CANN

The Combined Actuarial Neural Network is a novel actuarial neural

network architecture proposed by .

We summarise the CANN approach as follows:

Find the coe�cients of the GLM with a link function .

Find the weights of a neural network .

Given a new instance , we have

Schelldorfer and Wüthrich (2019)

β g(⋅)

w CANN M :CANN R →p R

x

E[Y ∣X = x] = g (⟨β,x⟩ +−1 M (x;w)).CANN CANN

37 / 81

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3320525

Shifting the predicted distributions
38 / 81

Architecture

The CANN architecture.

Source: Schelldorfer and Wüthrich (2019), , SSRN, Figure 8.Nesting Classical Actuarial Models into Neural Networks

39 / 81

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3320525

Code: Architecture

Since this CANN predicts gamma distributions, we use the gamma

NLL loss function.

random.seed(1)1
inputs = Input(shape=X_train.shape[1�])2

3
GLM part (won't be updated during training)4
glm_weights = gamma_glm.params.iloc[1�].values.reshape((-1, 1))5
glm_bias = gamma_glm.params.iloc[0] 6
glm_part = Dense(1, activation='linear', trainable=False,7
 kernel_initializer=Constant(glm_weights),8
 bias_initializer=Constant(glm_bias))(inputs)9

10
Neural network part11
x = Dense(64, activation='leaky_relu')(inputs)12
nn_part = Dense(1, activation='linear')(x) 13

14
Combine GLM and CANN estimates15
mu = keras.ops.exp(glm_part + nn_part)16
cann = Model(inputs, mu)17

def cann_negative_log_likelihood(y_true, y_pred)�1
return keras.ops.mean(keras.ops.log(y_pred) + y_true/y_pred)2

40 / 81

Code: Model Training

Find the dispersion parameter.

cann.compile(optimizer="adam", loss=cann_negative_log_likelihood)1
hist = cann.f�t(X_train, y_train,2
 epochs=100, 3
 callbacks=[EarlyStopping(patience=10)], 4
 verbose=0,5
 batch_size=64, 6
 validation_split=0.2)7

mus = cann.predict(X_train, verbose=0).flatten()1
residuals = y_train - mus2
dof = (len(y_train)-(X_train.shape[1] + 1))3
phi_cann = np.sum(residuals��2/mus��2) / dof4
print(phi_cann)5

31.171623242378978

41 / 81

Lecture Outline

Mixture Density Network

Introduction

Traditional Regression

Stochastic Forecasts

GLMs and Neural Networks

Combined Actuarial Neural Network

Metrics for Distributional Regression

Aleatoric and Epistemic Uncertainty

Avoiding Over�tting

Dropout

Ensembles

41 / 81

Mixture Distribution

Given a �nite set of resulting random variables , one can

generate a multinomial random variable .

Meanwhile, can be regarded as a mixture of , i.e.,

where we de�ne a set of �nite set of weights such

that for and .

(Y , … ,Y)1 K

Y ∼ Multinomial(1,π)
Y Y , … ,Y 1 K

Y =

⎩
⎨

⎧Y 1

⋮
Y K

w.p. π ,1

⋮
w.p. π ,K

π = (π … ,π)1 K

π ≥k 0 k ∈ {1, … ,K} π =∑k=1
K

k 1

42 / 81

Mixture Distribution

Let and be the p.d.f. and the c.d.f of for all

.

The random variable , which mixes ’s with weights ’s, has

the density function

and the cumulative density function

f Y ∣Xk
F Y ∣Xk

Y ∣Xk k ∈
{1, … ,K}

Y ∣X Y ∣Xk π k

f (y∣x) =Y ∣X π (x)f (y∣x),
k=1

∑
K

k k

F (y∣x) =Y ∣X π (x)F (y∣x).
k=1

∑
K

k k

43 / 81

Mixture Density Network
A mixture density network (MDN) outputs each distribution

component’s mixing weights and parameters of given the input

features , i.e.,

where is the networks’ weights found by minimising the following

negative log-likelihood loss function

where is the training dataset.

M w∗

Y

x

M (x) =w∗ (π(x;w),θ(x;w)),∗ ∗

w∗

L(D,θ) = − log f (y ∣x,w),
i=1

∑
n

Y ∣X i
∗

D = {(x , y)} i i i=1
n

44 / 81

Mixture Density Network

An MDN that outputs the parameters for a component mixture distribution.

 consists of the parameter estimates for the th mixture component.

K θ (x;w) =k
∗

(θ (x;w), … , θ (x;w))k,1
∗

k,∣θ ∣k
∗ k

45 / 81

Model Speci�cation
Suppose there are two types of claims:

Type I: and,

Type II: .

The density of the actual claim amount follows

where is the probability of a Type I claim given .

Y ∣X =1 x ∼ Gamma(α (x),β (x))1 1

Y ∣X =2 x ∼ Gamma(α (x),β (x))2 2

Y ∣X = x

f (y∣x)Y ∣X = π (x) ⋅ e y1 Γ(α (x))1

β (x)1
α (x)1

−β (x)y1 α (x)−11

+ (1 − π (x)) ⋅ e y .1 Γ(α (x))2

β (x)2
α (x)2

−β (x)y2 α (x)−12

π (x)1 x

46 / 81

Output
The aim is to �nd the optimum weights

for the Gamma mixture density network that outputs the mixing

weights, shapes and scales of given the input features , i.e.,

w =∗
 L(D,w)

w
arg min

M w∗

Y x

M (x) = (w∗ π (x;w),π (x;w),1
∗

2
∗

α (x;w),α (x;w),1
∗

2
∗

β (x;w),β (x;w)).1
∗

2
∗

47 / 81

Architecture

We demonstrate the structure of a gamma MDN that outputs the parameters for a gamma mixture

with two components.

48 / 81

Code: Import “legacy” Keras (for now)
import tf_keras1

Source: Tensor�ow Probability GitHub, , issue #1774.Keras 3 breaks Tensor�ow Probability upon import

49 / 81

https://github.com/tensorflow/probability/issues/1774#issuecomment-1841706103

Code: Architecture

The following code resembles the architecture of the architecture of

the gamma MDN from the previous slide.

Ensure reproducibility1
random.seed(1);2

3
inputs = tf_keras.layers.Input(shape=X_train.shape[1�])4

5
Two hidden layers 6
x = tf_keras.layers.Dense(64, activation='relu')(inputs)7
x = tf_keras.layers.Dense(64, activation='relu')(x)8

9
pis = tf_keras.layers.Dense(2, activation='softmax')(x) # Mixing weights10
alphas = tf_keras.layers.Dense(2, activation='exponential')(x) # Shape parameters11
betas = tf_keras.layers.Dense(2, activation='exponential')(x) # Scale parameters12
out = tf_keras.layers.Concatenate(axis=1)([pis, alphas, betas]) # shape = (None, 6)13

14
gamma_mdn = tf_keras.Model(inputs, out)15

50 / 81

Loss Function

The negative log-likelihood loss function is given by

where the is de�ned by

L(D,w) = − log f (y ∣x,w)
n

1

i=1

∑
n

Y ∣X i

f (y ∣x,w)Y ∣X i

π (x;w) ⋅ e y1 Γ(α (x;w))1

β (x;w)1
α (x;w)1

−β (x;w)y1 α (x;w)−11

+ (1 − π (x;w)) ⋅ e y1 Γ(α (x;w))2

β (x;w)2
α (x;w)2

−β (x;w)y2 α (x;w)−12

51 / 81

Code: Loss & training
tensorflow_probability to the rescue.

import tensorflow_probability as tfp1
tfd = tfp.distributions2

3
def gamma_mixture_nll(y_true, y_pred)� 4
 K = y_pred.shape[1] �� 35
 pis = y_pred[�, �K] 6
 alphas = y_pred[�, K�2*K] 7
 betas = y_pred[�, 2*K�3*K]8
 mixture_distribution = tfd.MixtureSameFamily(9
 mixture_distribution=tfd.Categorical(probs=pis),10
 components_distribution=tfd.Gamma(alphas, betas))11

return �tf_keras.backend.mean(mixture_distribution.log_prob(y_true))12

gamma_mdn.compile(optimizer="adam", loss=gamma_mixture_nll)1
2

hist = gamma_mdn.f�t(X_train, y_train,3
 epochs=100, 4
 callbacks=[tf_keras.callbacks.EarlyStopping(patience=10)], 5
 verbose=0,6
 batch_size=64, 7
 validation_split=0.2)8

52 / 81

Lecture Outline

Metrics for Distributional Regression

Introduction

Traditional Regression

Stochastic Forecasts

GLMs and Neural Networks

Combined Actuarial Neural Network

Mixture Density Network

Aleatoric and Epistemic Uncertainty

Avoiding Over�tting

Dropout

Ensembles

52 / 81

Proper Scoring Rules
De�nition

A scoring rule is the equivalent of a loss function for

distributional regression.

Denote to be the score given to the forecasted

distribution and an observation .

De�nition

A scoring rule is called proper if

for all and distributions.

It is called strictly proper if equality holds only if .

S(F , y)
F y ∈ R

E S(Q,Y) ≤Y ∼Q E S(F ,Y)Y ∼Q

F Q

F = Q

53 / 81

Example Proper Scoring Rules
Logarithmic Score (NLL)

The logarithmic score is de�ned as

where is the predictive density.

Continuous Ranked Probability Score (CRPS)

The continuous ranked probability score is de�ned as

where is the predicted c.d.f.

LogS(f , y) = − log f(y),

f

crps(F , y) = (F (t) −∫
−∞

∞

1) dt,t≥y
2

F

See, e.g., Taggert (2023), , BoM Research Report 079.Estimation of CRPS for precipitation forecasts…

54 / 81

https://nla.gov.au/nla.obj-3160938615/view

Likelihoods

55 / 81

Code: NLL
def gamma_nll(mean, dispersion, y)�1

Calculate shape and scale parameters from mean and dispersion2
 shape = 1 / dispersion; scale = mean * dispersion3

4
Create a gamma distribution object5

 gamma_dist = stats.gamma(a=shape, scale=scale)6
7

return �np.mean(gamma_dist.logpdf(y))8
9

GLM10
X_test_design = sm.add_constant(X_test)11
mus = gamma_glm.predict(X_test_design)12
nll_glm = gamma_nll(mus, phi_glm, y_test)13

14
CANN15
mus = cann.predict(X_test, verbose=0)16
nll_cann = gamma_nll(mus, phi_cann, y_test)17

18
MDN19
nll_mdn = gamma_mdn.evaluate(X_test, y_test, verbose=0)20

56 / 81

Model Comparisons
print(f'GLM� {round(nll_glm, 2)}')1
print(f'CANN� {round(nll_cann, 2)}')2
print(f'MDN� {round(nll_mdn, 2)}')3

GLM� 11.02
CANN� 10.44
MDN� 8.67

57 / 81

Lecture Outline

Aleatoric and Epistemic Uncertainty

Introduction

Traditional Regression

Stochastic Forecasts

GLMs and Neural Networks

Combined Actuarial Neural Network

Mixture Density Network

Metrics for Distributional Regression

Avoiding Over�tting

Dropout

Ensembles

57 / 81

Categories of uncertainty
There are two major categories of uncertainty in statistical or

machine learning:

Aleatoric uncertainty

Epistemic uncertainty

Since there is no consensus on the de�nitions of aleatoric and

epistemic uncertainty, we provide the most acknowledged de�nitions

in the following slides.

58 / 81

Aleatoric Uncertainty
Qualitative De�nition

Aleatoric uncertainty refers to the statistical variability and

inherent noise with data distribution that modelling cannot explain.

Quantitative De�nition

i.e., if , the aleatoric uncertainty would be

. Simply, it is the conditional variance of the response variable

given features/covariates .

Ale(Y ∣X = x) = V[Y ∣X = x],

Y ∣X = x ∼ N (μ,σ)2 σ2

Y

x

59 / 81

Epistemic Uncertainty
Qualitative De�nition

Epistemic uncertainty refers to the lack of knowledge, limited data

information, parameter errors and model errors.

Quantitative De�nition

i.e., the total uncertainty subtracting the aleatoric uncertainty

 would be the epistemic uncertainty.

Epi(Y ∣X = x) = Uncertainty(Y ∣X = x) − Ale(Y ∣X = x),

V[Y ∣X = x]

60 / 81

Sources of uncertainty
If you decide to predict the claim amount of an individual using a deep

learning model, which source(s) of uncertainty are you dealing with?

1. The inherent variability of the data-generating process aleatoric

uncertainty.

2. Parameter error epistemic uncertainty.

3. Model error epistemic uncertainty.

4. Data uncertainty epistemic uncertainty.

→

→

→

→

61 / 81

Lecture Outline

Avoiding Over�tting

Introduction

Traditional Regression

Stochastic Forecasts

GLMs and Neural Networks

Combined Actuarial Neural Network

Mixture Density Network

Metrics for Distributional Regression

Aleatoric and Epistemic Uncertainty

Dropout

Ensembles

61 / 81

Traditional regularisation
Say all the weights (excluding biases) are in the vector . If we

change the loss function to

this would be using regularisation. A loss like

is called regularisation.

m θ

Loss =1:n Loss +
n

1

i=1

∑
n

i λ θ

j=1

∑
m

∣ j ∣

L1

Loss =1:n Loss +
n

1

i=1

∑
n

i λ θ

j=1

∑
m

j
2

L2

62 / 81

Regularisation in Keras

from keras.regularizers import L1, L21
2

def l1_model(regulariser_strength=0.01)�3
 random.seed(123)4
 model = Sequential([5
 Dense(30, activation="leaky_relu",6
 kernel_regularizer=L1(regulariser_strength)),7
 Dense(1, activation="exponential")8
])9

10
 model.compile("adam", "mse")11
 model.f�t(X_train_sc, y_train, epochs=4, verbose=0)12
return model13

14
def l2_model(regulariser_strength=0.01)�15
 random.seed(123)16
 model = Sequential([17
 Dense(30, activation="leaky_relu",18
 kernel_regularizer=L2(regulariser_strength)),19
 Dense(1, activation="exponential")20
])21

22
 model.compile("adam", "mse")23
 model.f�t(X_train_sc, y_train, epochs=10, verbose=0)24
return model25

63 / 81

Weights before & after L2

model = l2_model(0.0)1
weights = model.layers[0].get_weights()2
print(f"Number of weights almost 0� {np3
plt.hist(weights, bins=100);4

Number of weights almost 0� 0

model = l2_model(1.0)1
weights = model.layers[0].get_weights()2
print(f"Number of weights almost 0� {np3
plt.hist(weights, bins=100);4

Number of weights almost 0� 0

64 / 81

Weights before & after L1

model = l1_model(0.0)1
weights = model.layers[0].get_weights()2
print(f"Number of weights almost 0� {np3
plt.hist(weights, bins=100);4

Number of weights almost 0� 0

model = l1_model(1.0)1
weights = model.layers[0].get_weights()2
print(f"Number of weights almost 0� {np3
plt.hist(weights, bins=100);4

Number of weights almost 0� 36

65 / 81

Early-stopping regularisation

A very di�erent way to regularize iterative learning algorithms

such as gradient descent is to stop training as soon as the

validation error reaches a minimum. This is called early

stopping… It is such a simple and e�cient regularization

technique that Geo�rey Hinton called it a “beautiful free lunch”.

Alternatively, you can try building a model with slightly more

layers and neurons than you actually need, then use early

stopping and other regularization techniques to prevent it from

over�tting too much. Vincent Vanhoucke, a scientist at Google,

has dubbed this the “stretch pants” approach: instead of wasting

time looking for pants that perfectly match your size, just use

large stretch pants that will shrink down to the right size.

Source: Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition, Chapters 4 and 10.

66 / 81

Lecture Outline

Dropout

Introduction

Traditional Regression

Stochastic Forecasts

GLMs and Neural Networks

Combined Actuarial Neural Network

Mixture Density Network

Metrics for Distributional Regression

Aleatoric and Epistemic Uncertainty

Avoiding Over�tting

Ensembles

67 / 81

Dropout

An example of neurons dropped during training.

Sources: Marcus Lautier (2022).

68 / 81

Dropout quote #1

It’s surprising at �rst that this destructive technique works at all.

Would a company perform better if its employees were told to

toss a coin every morning to decide whether or not to go to work?

Well, who knows; perhaps it would! The company would be forced

to adapt its organization; it could not rely on any single person to

work the co�ee machine or perform any other critical tasks, so

this expertise would have to be spread across several people.

Employees would have to learn to cooperate with many of their

coworkers, not just a handful of them.

Source: Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, p. 366

69 / 81

Dropout quote #2

The company would become much more resilient. If one person

quit, it wouldn’t make much of a di�erence. It’s unclear whether

this idea would actually work for companies, but it certainly does

for neural networks. Neurons trained with dropout cannot co-

adapt with their neighboring neurons; they have to be as useful as

possible on their own. They also cannot rely excessively on just a

few input neurons; they must pay attention to each of their input

neurons. They end up being less sensitive to slight changes in the

inputs. In the end, you get a more robust network that

generalizes better.

Source: Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, p. 366

70 / 81

Code: Dropout
Dropout is just another layer in Keras.

from keras.layers import Dropout1
2

random.seed(2);3
4

model = Sequential([5
 Dense(30, activation="leaky_relu"),6
 Dropout(0.2),7
 Dense(30, activation="leaky_relu"),8
 Dropout(0.2),9
 Dense(1, activation="exponential")10
])11

12
model.compile("adam", "mse")13
model.f�t(X_train_sc, y_train, epochs=4, verbose=0);14

71 / 81

Code: Dropout after training
Making predictions is the same as any other model:

We can make the model think it is still training:

model.predict(X_train_sc.head(3),1
 verbose=0)2

array([[1.0587903],
[1.2814349],
[0.9994641]], dtype=float32)

model.predict(X_train_sc.head(3),1
 verbose=0)2

array([[1.0587903],
[1.2814349],
[0.9994641]], dtype=float32)

model(X_train_sc.head(3),1
 training=True).numpy()2

array([[1.082524],
[0.74211466],
[1.1583111]], dtype=float32)

model(X_train_sc.head(3),1
 training=True).numpy()2

array([[1.0132376],
[1.2697867],
[0.7800578]], dtype=float32)

72 / 81

Dropout Limitation

Increased Training Time: Since dropout introduces noise into the

training process, it can make the training process slower.

Sensitivity to Dropout Rates: the performance of dropout is highly

dependent on the chosen dropout rate.

73 / 81

Accidental dropout (“dead neurons”)
My �rst ANN for California housing

random.seed(123)1
2

model = Sequential([3
 Dense(30, activation="relu"),4
 Dense(1)5
])6

7
model.compile("adam", "mse")8
hist = model.f�t(X_train, y_train,9
 epochs=5, verbose=0)10
hist.history["loss"]11

[25089.478515625,
12.956829071044922,
13.395614624023438,
7.074806213378906,
5.800335884094238]

74 / 81

Find dead ReLU neurons
acts = model.layers[0](X_train).numpy()1
print(X_train.shape, acts.shape)2
acts[�3]3

(12384, 8) (12384, 30)

array([[261.458 , 502.33704 , 93.64283 , ���, 537.54865 , 325.7366 ,
398.99435],
[18.983932, 52.9067 , 0. , ���, 28.361092, 10.988864,
58.194595],

[266.2954 , 517.58154 , 98.64309 , ���, 553.68005 , 336.69986 ,
411.61124]], dtype=float32)

dead = acts.mean(axis=0) �� 01
np.sum(dead)2

7

idx = np.where(dead)[0][0]1
acts[�, idx-1:idx+2]2

array([[0. , 0. , 0.],
[18.991873, 0. , 0.],
[0. , 0. , 0.],
���,
[0. , 0. , 0.],
[0. , 0. , 0.],
[0. , 0. , 0.]], dtype=float32)

75 / 81

Trying di�erent seeds
Create a function which counts the number of dead ReLU neurons in

the �rst hidden layer for a given seed:

Then we can try out di�erent seeds:

def count_dead(seed)�1
 random.seed(seed)2
 hidden = Dense(30, activation="relu")3
 acts = hidden(X_train).numpy()4

return np.sum(acts.mean(axis=0) �� 0)5

num_dead = [count_dead(seed) for seed in range(1_000)]1
np.median(num_dead)2

5.0

76 / 81

Look at distribution of dead ReLUs
labels, counts = np.unique(num_dead, return_counts=True)1
plt.bar(labels, counts, align='center');2

77 / 81

Lecture Outline

Ensembles

Introduction

Traditional Regression

Stochastic Forecasts

GLMs and Neural Networks

Combined Actuarial Neural Network

Mixture Density Network

Metrics for Distributional Regression

Aleatoric and Epistemic Uncertainty

Avoiding Over�tting

Dropout

78 / 81

Ensembles

Combine many models to get better predictions.

Source: Marcus Lautier (2022).

79 / 81

Deep Ensembles
Train neural networks with di�erent random initial weights

independently (even in parallel).

M

def build_model(seed)�1
 random.seed(seed)2
 model = Sequential([3
 Dense(30, activation="leaky_relu"),4
 Dense(1, activation="exponential")5
])6
 model.compile("adam", "mse")7

8
 es = EarlyStopping(restore_best_weights=True, patience=5)9
 model.f�t(X_train_sc, y_train, epochs=1_000,10
 callbacks=[es], validation_data=(X_val_sc, y_val), verbose=False)11

return model12

M = 31
seeds = range(M)2
models = []3
for seed in seeds:4
 models.append(build_model(seed))5

80 / 81

Deep Ensembles II
Say the trained weights by , then we get predictionsw , … ,w(1) (M)

{ (x;w)} ŷ (m)
m=1
M

y_preds = []1
for model in models:2
 y_preds.append(model.predict(X_test_sc, verbose=0))3

4
y_preds = np.array(y_preds)5
y_preds6

array([[[3.2801466],
[0.76298356],
[2.4068608],
���,
[2.3385763],
[2.1730225],
[1.096715]],

[[3.1832185],
[0.72296774],
[2.5727806],
���,
[2.3812106],
[2.27971],
[1.06247]],

[[3.0994337],
[0.77855957],
[2.6037261],

81 / 81

Package Versions
from watermark import watermark1
print(watermark(python=True, packages="keras,matplotlib,numpy,pandas,seaborn,scipy,torch2

Python implementation: CPython
Python version : 3.11.9
IPython version : 8.24.0

keras : 3.3.3
matplotlib : 3.9.0
numpy : 1.26.4
pandas : 2.2.2
seaborn : 0.13.2
scipy : 1.11.0
torch : 2.3.1
tensorflow : 2.16.1
tensorflow_probability: 0.24.0
tf_keras : 2.16.0

81 / 81

Glossary

aleatoric and epistemic

uncertainty

combined actuarial neural

network

dead ReLU

deep ensembles

distributional forecasts

dropout

generalised linear model

mixture density network

mixture distribution

Monte Carlo dropout

proper scoring rule

81 / 81

